認(rèn)識下納米壓痕儀以及它的組成和應(yīng)用
隨著精密加工技術(shù)的發(fā)展,材料在納米尺度下的力學(xué)特性引起了人們的極大關(guān)注研究。而傳統(tǒng)的硬度測量方法只適于宏觀條件下的研究和應(yīng)用,無法用于測量壓痕深度為納米***或亞微米***的硬度,即所謂納米硬度。近年來,測量納米硬度***般采用新興的納米壓痕技術(shù) (nano-indentation),由于采用納米壓痕技術(shù)可以在極小的尺寸范圍內(nèi)測試材料的力學(xué)性能,除了塑性性質(zhì)外,還可反映材料的彈性性質(zhì),因此得到了越來越廣泛的應(yīng)用。
納米壓痕技術(shù)也稱深度敏感壓痕技術(shù),是***簡單的測試材料力學(xué)性質(zhì)的方法之***,可以在納米尺度上測量材料的各種力學(xué)性質(zhì),如載荷-位移曲線、彈性模量、硬度、斷裂韌性、應(yīng)變硬化效應(yīng)、粘彈性或蠕變行為等。納米壓痕技術(shù)是***種先進(jìn)的微尺度力學(xué)測量技術(shù),它通過測量作用在壓針上的載荷和壓入樣品表面的深度來獲得材料的載荷-位移曲線。
以納米壓痕技術(shù)為基礎(chǔ)開發(fā)出的納米壓痕儀為材料的納米力學(xué)性能檢測提供了高效、便捷的手段。納米壓痕儀主要用于微納米尺度薄膜材料的硬度與楊氏模量測試,測試結(jié)果通過力與壓入深度的曲線計算得出,無需通過顯微鏡觀察壓痕面積。納米壓痕儀的基本組成可以分為控制系統(tǒng)、移動線圈系統(tǒng)、加載系統(tǒng)及壓頭等幾個部分。壓頭***般使用金剛石壓頭,分為三角錐或四棱錐等類型。試驗(yàn)時,***先輸入初始參數(shù),之后的檢測過程則完全由微機(jī)自動控制,通過改變移動線圈系統(tǒng)中的電流,可以操縱加載系統(tǒng)和壓頭的動作,壓頭壓入載荷的測量和控制通過應(yīng)變儀來完成,同時應(yīng)變儀還將信號反饋到移動線圈系統(tǒng)以實(shí)現(xiàn)閉環(huán)控制,從而按照輸入?yún)?shù)的設(shè)置完成試驗(yàn)。
納米壓痕儀主要用于測量納米尺度的硬度與彈性模量,可適用于有機(jī)或無機(jī)、軟質(zhì)或硬質(zhì)材料的檢測分析,包括PVD、CVD、PECVD薄膜,感光薄膜,彩繪釉漆,光學(xué)薄膜,微電子鍍膜,保護(hù)性薄膜,裝飾性薄膜等等。基體可以為軟質(zhì)或硬質(zhì)材料,包括金屬、合金、半導(dǎo)體、玻璃、礦物和有機(jī)材料等。
也廣泛應(yīng)用于半導(dǎo)體技術(shù)(鈍化層、鍍金屬、Bond Pads);存儲材料(磁盤的保護(hù)層、磁盤基底上的磁性涂層、CD的保護(hù)層);光學(xué)組件(接觸鏡頭、光纖、光學(xué)刮擦保護(hù)層);金屬蒸鍍層;防磨損涂層(TiN, TiC, DLC, 切割工具);藥理學(xué)(藥片、植入材料、生物組織);工程學(xué)(油漆涂料、橡膠、觸摸屏、MEMS)等行業(yè)。
由此可見,納米壓痕儀對于很多行業(yè)的生產(chǎn)、研究以及材料在納米尺度下的檢測分析來說都是不可或缺的儀器設(shè)備。